Характер процессов смесеобразования и сгорания в двигателе с принудительным воспламенением

Материалы » Автомобильные двигатели: рабочие циклы, показатели и характеристики. Методы повышения эффективности энергопреобразования » Характер процессов смесеобразования и сгорания в двигателе с принудительным воспламенением

Страница 2

Существенную роль играет испарение с поверхности пленки, которая интенсивно обдувается потоком. Большое значение для испарения пленки имеет теплообмен со стенками впускного тракта, поэтому при центральном впрыскивании и карбюрации впускной трубопровод обычно обогревается охлаждающей двигатель жидкостью или отработавшими газами.

В зависимости от конструкции впускного тракта и режима работы карбюраторного двигателя и при центральном впрыскивании на выходе из впускного трубопровода содержание в горючей смеси паров топлива может составлять 60 .95% [ 3 ]. Процесс испарения топлива продолжается в цилиндре во время тактов впуска и сжатия, к началу сгорания топливо практически испаряется полностью.

Особенно интенсивно испаряется пленка с поверхности впускного клапана, однако продолжительность этого испарения невелика, поэтому при распределенном впрыскивании на тарелку впускного клапана и работе двигателя с полным дросселем до поступления в цилиндр испаряется лишь 30 .50% цикловой дозы топлива [ 3 ].

Доля топлива, испарившегося перед поступлением в цилиндр, на режимах холодного пуска может уменьшаться до 5 .10%.

Неравномерность состава смеси по цилиндрам. Скорости движения воздуха и паров топлива во впускном тракте равны, а скорость капель на 2 .6 м/с меньше, чем скорость воздуха. Из-за неодинакового сопротивления ветвей впускного тракта наполнение отдельных цилиндров воздухом может отличаться, но не более чем на 2 .4%.

Распределение топлива по каналам разветвленного впускного трубопровода, а значит, и по цилиндрам карбюраторного двигателя или при центральном впрыскивании может характеризоваться значительно большей неравномерностью главным образом за счет неодинакового распределения пленки. Это означает, что и состав смеси в цилиндрах будет неодинаковым.

Степень неравномерности состава смеси оценивается показателем

Di = (2.1.1)

где αi – коэффициент избытка воздуха в i – ом цилиндре.

Для более равномерного распределения состава смеси по цилиндрам необходимо обеспечить возможно более полное испарение топлива до зон разветвления впускного трубопровода. В этой связи, например, улучшение распыливания уменьшает степень неравномерности состава смеси.

Индикаторный коэффициент полезного действия (КПД) двигателя ηi зависит от полноты, скорости и своевременности сгорания топлива. Чем однороднее и сильнее турбулизирована смесь, тем быстрее она горит. В соответствии с индикаторной диаграммой в процессе сгорания можно выделить три фазы.

Первая фаза θI , начинающаяся в момент проскакивания электрической искры и заканчивающаяся, когда давление в цилиндре становится в результате выделения теплоты выше, чем при сжатии смеси до верхней мертвой точки (ВМТ) без сгорания, называется начальной фазой сгорания или фазой формирования фронта пламени. В этот период времени очаг горения, формирующийся в зоне высоких температур между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени. Развитие сгорания в течение этой фазы в основном определяют закономерности мелкомасштабного турбулентного горения. Доля топлива, сгорающего в период θI меньше 2 .3%, поэтому индикатор не регистрирует увеличение давления относительно давления сжатия. На длительность θI в градусах ПКВ влияют следующие факторы:

Состав смеси. Наименьшее значение θI соответствует составу смеси, при котором скорость сгорания имеет наибольшее значение (α = 0,8 .0,9). При сильном обеднении смеси не только заметно увеличивается θI, но и резко ухудшается стабильность воспламенения, вплоть до появления пропусков в отдельных циклах.

Вихревое движение заряда. Применение винтовых или тангенциальных впускных каналов позволяет создать интенсивное вихревое движение заряда в цилиндре, что способствует увеличению мелкомасштабной турбулентности, а это в свою очередь приводит к сокращению длительности θI.

Степень сжатия. С ростом степени сжатия ε увеличиваются температура и давление рабочей смеси, а это способствует повышению нормальной скорости сгорания и соответствующему сокращению длительности θ1. По этим же причинам уменьшение угла опережения зажигания приводит к некоторому уменьшению θI.

Частота вращения. Опыты показывают, что θI ~ nm, где m = 0,5 .1,0. Чем сильнее возрастают мелкомасштабные пульсации при увеличении частоты вращения п, тем меньше значение показателя т.

Нагрузка двигателя. По мере закрытия дроссельной заслонки увеличивается относительное количество отработавших газов (ОГ) и уменьшается давление рабочей смеси. Все это приводит к увеличению длительности θI , а также к ухудшению стабильности воспламенения.

Характеристики искрового разряда. Чем выше пробивное напряжение, длительность и стабильность разряда, тем меньше θI, поэтому электронные (транзисторные) системы зажигания несколько улучшают по сравнению с классическими контактными системами воспламенение и сгорание, особенно на режимах разгона или при значительном обеднений смеси.

Страницы: 1 2 3

Материалы о транспорте:

Обеспечение пожарной безопасности
противопожарное оборудование и инвентарь приобретают, ремонтируют и учитывают хозяйственные подразделения. Ответственность за их состояние и обеспечение несут соответствующие руководители. Для зарядк ...

Путевая устойчивость самолета
Способность самолета без вмешательства летчика восстанавливать первоначальное состояние путевого равновесия называется путевой устойчивостью. При нарушении путевого равновесия самолет начнет разворач ...

Региональные направления транспортировки грузов
Эффективность работы судоходной компании во многом определяется теми регионами, где работает принадлежащий ей флот. В данном разделе рассмотрим конкретные направления перевозок с учетом некоторых осо ...

Навигация

Copyright © 2024 - All Rights Reserved - www.transpodepth.ru