2. Расчет пальца проушины рукояти для крепления коромысла:
Расчет производится на срез и изгиб.
Исходные данные:
DПАЛ = 75 мм – диаметр пальца;
LПАЛ = 376 мм – длина пальца (определяется исходя из ширины рукояти);
Определим площадь сечения пальца, мм2:
А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2
Определим момент осевой сопротивления пальца, мм3:
W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3
Зная значение усилия от коромысла Ркор = 77.18 кН, определим τПАЛ, МПа:
τПАЛ = Ркор / 2∙ А ПАЛ = 77180 / 2∙ 4415.625 = 8.73 МПа
Определим напряжение возникающие в пальце рукояти, МПа:
σПАЛ = Ркор ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 175.25 МПа
В качестве материала пальца используем сталь 40Х (термообработка – закалка и средний отпуск с пределом текучести 480 МПа). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)
3. Расчет пальца проушины рукояти для крепления стрелы:
Расчет производится на срез и изгиб.
Исходные данные:
DПАЛ = 75 мм – диаметр пальца;
LПАЛ = 376 мм – длина пальца (определяется исходя из ширины рукояти);
Определим площадь сечения пальца, мм2:
А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2
Определим момент осевой сопротивления пальца, мм3:
W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3
Зная значение усилия стрелы РСТР = 555.1 кН, определим τПАЛ, МПа:
τПАЛ = Рстр / 2∙ А ПАЛ = 555100 / 2∙ 4415.625 = 62.85 МПа
Определим напряжение возникающие в пальце рукояти, МПа:
σПАЛ = Рстр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 1260 МПа
В качестве материала пальца используем сталь 40ХН σтек = 1450 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)
4. Расчет пальца проушины рукояти для крепления гидроцилиндра рукояти:
Расчет производится на срез и изгиб.
Исходные данные:
DПАЛ = 75 мм – диаметр пальца;
LПАЛ = 250 мм – длина пальца (определяется исходя из ширины рукояти);
Определим площадь сечения пальца, мм2:
А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2
Определим момент осевой сопротивления пальца, мм3:
W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3
Зная значение усилия гидроцилиндра рукояти РГЦР = 492.5 кН, определим τПАЛ, МПа:
τПАЛ = Ргцр / 2∙ А ПАЛ = 492500 / 2∙ 4415.625 = 55.76 МПа
Определим напряжение возникающие в пальце рукояти, МПа:
σПАЛ = Ргцр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 743.5 МПа
В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)
5. Расчет пальца проушины рукояти для крепления гидроцилиндра ковша:
Расчет производится на срез и изгиб.
Исходные данные:
DПАЛ = 75 мм – диаметр пальца;
LПАЛ = 250 мм – длина пальца (определяется исходя из ширины рукояти);
Определим площадь сечения пальца, мм2:
А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2
Определим момент осевой сопротивления пальца, мм3:
W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3
Зная значение усилия гидроцилиндра ковша Ргцк = 248.6 кН, определим τПАЛ, МПа:
τПАЛ = Ргцк / 2∙ А ПАЛ = 248600 / 2∙ 4415.625 = 28.15 МПа
Определим напряжение возникающие в пальце рукояти, МПа:
σПАЛ = Ргцк ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 375 МПа
В качестве материала пальца используем сталь 40Х σтек = 900 Мпа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)
Определим сечение рукояти в шарнире соединения рукояти с ковшом
Определим размеры поперечного сечения рукояти. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
Материалы о транспорте:
Автомобильный транспорт
Автомобильный транспорт является единственным видом транспорта, позволяющим осуществлять перевозки «от склада до двери». Протяженность автомобильных дорог общего пользования с твердым покрытием соста ...
Разработка
технологического процесса
Перед разработкой технологического процесса восстановления детали выбираю базы. Проводим основные операции по подготовке детали к восстановления. Разрабатываем схему технологического процесса. Послед ...
Карбюратор К-151, система ускорительного насоса
Из названия ясно, что ускорительный насос обеспечивает разгонную динамику автомобиля. Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием ...